If sec θ=54, find the value of sinθ−2 cos θtan θ−cot θ
Given: sec θ=54∵ we know that cos θ=1sec θ∴ cos θ=45 ---(i)
Now, we know that
cos2 θ+sin2 θ=1
we can re-write it as,
sin θ=√1−cos2 θ
Substituting the value of cos θ from equation (i)
we get,
sin θ=√1−(45)2=√1−1625=√25−1625=√925=35
∴ sin θ=35 ---(ii)
We also know that,
sec2 θ=1+tan2 θ∴ tan2 θ=sec2 θ−1∵ we know sec θ=54
putting the value of sec θ in the above equation, we get
tan2 θ=(54)2−1⇒ tan2 θ=2516−1⇒ tan θ=√25−1616⇒ tan θ=√916∴ tan θ=34 ---(iii)
∵cot θ=1tan θ∴ cot θ=43 ---(iv)
substituting the values of sin θ, cos θ, tan θ and cot θ from equations (i), (ii), (iii) and (iv) in the equation
sinθ−2 cos θtan θ−cot θ
we get,
=35−2×(45)34−43=35−8534−43
Upon simplification we get,
=−559−1612=127