wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

If sec θ=54, find the value of sinθ2 cos θtan θcot θ

Open in App
Solution

Given: sec θ=54 we know that cos θ=1sec θ cos θ=45 ---(i)

Now, we know that
cos2 θ+sin2 θ=1
we can re-write it as,
sin θ=1cos2 θ
Substituting the value of cos θ from equation (i)
we get,
sin θ=1(45)2=11625=251625=925=35

sin θ=35 ---(ii)

We also know that,
sec2 θ=1+tan2 θ tan2 θ=sec2 θ1 we know sec θ=54
putting the value of sec θ in the above equation, we get
tan2 θ=(54)21 tan2 θ=25161 tan θ=251616 tan θ=916 tan θ=34 ---(iii)

cot θ=1tan θ cot θ=43 ---(iv)

substituting the values of sin θ, cos θ, tan θ and cot θ from equations (i), (ii), (iii) and (iv) in the equation
sinθ2 cos θtan θcot θ
we get,
=352×(45)3443=35853443
Upon simplification we get,
=5591612=127


flag
Suggest Corrections
thumbs-up
77
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon