If sec θ=54, show that (sin θ−2cos θ)(tan θ−cot θ)=127.
Given: sec θ=54−−−−(1)
To find the value of sin θ–2cos θtan θ–cot θ
Now we know that sec θ=1cos θ
Therefore,
cos θ=1sec θ
Therefore from equation (1)
cos θ=45cos θ=45−−−−(2)
Also, we know that cos2 θ+sin2 θ=1
Therefore,
sin2 θ=1–cos2 θsin θ=√1–cos2 θ
Substituting the value of cos θ from equation (2)
We get,
sin θ=√1−(45)2=√1−1625=√925=35
Therefore,
sin θ=35−−−−(3)
Also, we know that
sec2 θ=1+tan2 θ
Therefore,
tan2 θ=(54)2−1tan θ=√916
Therefore,
tan θ=34−−−−(4)
Also, cot θ=1tan θ
Therefore from equation (4)
We get,
cot θ=43−−−−(5)
Substituting the value of cos θ,cot θ and tan θ from the equation (2), (3), (4) and (5) respectively in the expression below.
sin θ–2cos θtan θ–cot θ
We get,
sin θ–2cos θtan θ–cot θ=35−2(45)34–43=127
Therefore, sin θ–2cos θtan θ–cot θ=127