If secθ = 54, then tan θ2 =
13
34
14
19
Given that secθ = 54
secθ = 1+tan2(θ2)1−tan2(θ2) ⇒ 54 = 1+tan2(θ2)1−tan2(θ2)
⇒ 5−5tan2(θ2)=4+4tan2(θ2)
⇒ 9tan2(θ2) = 1 ⇒ tan(θ2) = 13.