If secθ−tanθ=13, the value of secθ+tanθ is:
1
2
3
4
We know that, sec2θ−tan2θ=1
Therefore, (secθ+tanθ)(secθ−tanθ)=1
Since, secθ−tanθ=13 [Given]
⇒(secθ+tanθ)×13=1
Thus, secθ+tanθ=3