If (sec θ−tan θ)=13, the value of (sec θ+tan θ) is _____________.
We know that , sec2θ−tan2θ=1 and
a2−b2 = (a + b) (a - b).
Therefore,
sec2θ−tan2θ=(secθ+tanθ)(secθ−tanθ)
So, (secθ+tanθ)(secθ−tanθ)=1
Substituiting, (sec θ−tan θ)=13 in the above equation we get,
13×(sec θ+tan θ)=1(sec θ+tan θ)=3