wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secθ+tanθ=p, prove that p21p2+1=sinθ

Open in App
Solution

p21p2+1
=(secθ+tanθ)21(secθ+tanθ)2+1
sec2θ+tan2θ+2secθtanθ1sec2θ+tan2θ+2secθtanθ+1
=(sec2θ1)+tan2θ+2secθtanθsec2θ+(tan2θ+1)+2secθtanθ
=tan2θ+tan2θ+2secθtanθsec2θ+sec2θ+2secθtanθ
=2tan2θ+2secθtanθ2sec2θ+2secθtanθ
=2tanθ(tanθ+secθ)2secθ(secθ+tanθ)
=2tanθ2secθ
=tanθ×cosθ
=sinθcosθ×cosθ
=sinθ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon