If sec Θ+tan Θ=p. Show that p2−1p2+1=sin Θ
If secθ+tanθ=p , prove that
(i) secθ=12(p+1p)
(ii) tanθ=12(p−1p)
(iii) sinθ=p2−1p2+1
If secθ+tanθ=p ,prove that = (p²-1)/(p²+1).