wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secΘ+tanΘ=p, prove that sinΘ=p21p2+1

Open in App
Solution

RHS=P21P2+1
=(secθ+tanθ)21(secθ+tanθ)2+1
=sec2θ+tan2θ+2secθ.tanθ1sec2θ+tan2θ+2secθ.tanθ+1
=tan2θ+tan2θ+2secθ.tanθsec2θ+sec2θ+2secθ.tanθ
=2tan2θ+2secθ.tanθ2sec2θ+2secθ.tanθ
=2tanθ(tanθ+secθ)2secθ(secθ+tanθ)
=tanθsecθ=sinθ=LHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon