2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definition of Functions
If θ+ tanθ=...
Question
If
sec
θ
+
tan
θ
=
p
, show that
p
2
−
1
p
2
+
1
=
sin
θ
Open in App
Solution
If
s
e
c
θ
+
t
a
n
θ
=
P
Consider
P
2
−
1
P
+
1
=
(
s
e
c
θ
+
t
a
n
θ
)
2
−
1
s
e
c
θ
+
t
a
n
θ
+
1
=
s
e
c
2
θ
+
t
a
n
2
θ
+
2
s
e
c
θ
t
a
n
θ
−
1
s
e
c
2
θ
+
t
a
n
2
θ
+
2
s
e
c
θ
t
a
n
θ
+
1
[Since,
(
a
+
b
)
2
=
a
2
+
b
2
+
2
a
b
]
=
2
t
a
n
2
θ
+
2
s
e
c
θ
t
a
n
θ
2
s
e
c
2
θ
+
2
s
e
c
θ
t
a
n
θ
[Since,
t
a
n
2
θ
=
s
e
c
2
θ
−
1
]
=
2
t
a
n
θ
(
t
a
n
θ
+
s
e
c
θ
)
2
s
e
c
θ
(
s
e
c
θ
+
t
a
n
θ
)
=
s
i
n
θ
c
o
s
θ
×
1
1
cos
θ
=
s
i
n
θ
c
o
s
θ
×
c
o
s
θ
1
=
s
i
n
θ
Hence, proved.
Suggest Corrections
0
Similar questions
Q.
If
(
sec
θ
+
tan
θ
)
=
p
. Prove that
sin
θ
=
p
2
−
1
p
2
+
1
.
Q.
If
sec
θ
+
tan
θ
=
p
then
sin
θ
=
p
2
+
1
p
2
−
1
Q.
If
s
e
c
θ
+
t
a
n
θ
=
p
, prove that
(i)
s
e
c
θ
=
1
2
(
p
+
1
p
)
(ii)
t
a
n
θ
=
1
2
(
p
−
1
p
)
(iii)
s
i
n
θ
=
p
2
−
1
p
2
+
1
Q.
If sec θ + tan θ = p, prove that sin θ =
p
2
-
1
p
2
+
1