wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If secθ+tanθ=p, show that p21p2+1=sinθ

Open in App
Solution

If secθ+tanθ=P
Consider P21P+1=(secθ+tanθ)21secθ+tanθ+1
=sec2θ+tan2θ+2secθ tanθ1sec2θ+tan2θ+2secθtanθ+1 [Since, (a+b)2=a2+b2+2ab]

=2tan2θ+2secθtanθ2sec2θ+2secθtanθ [Since, tan2θ=sec2θ1]

=2tanθ(tanθ+secθ)2secθ(secθ+tanθ)
=sinθcosθ×11cosθ
=sinθcosθ×cosθ1=sinθ
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon