wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sec Θ+tan Θ=p. Show that p21p2+1=sin Θ

Open in App
Solution

We have,
LHS=p21p2+1=(sin θ+tan θ)21(sec θ+tan θ)2+1
=sec2θ+tan2θ+2secθtanθ1sec2θ+tan2θ+2secθtanθ+1
=(sec2θ)+tan2θ+2secθtanθsec2+2secθtanθ+(1+tan2θ)
=tan2θ+tan2θ+2secθtanθsec2θ+2secθtanθ+sec2θ
=2tan2θ+2secθtanθ2sec2θ+2secθtanθ
=2tanθ(tanθ+secθ)2secθ(sec+tanθ)
=sinθ=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon