wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secθ+tanθ=p, show that secθtanθ=1p. Hence, find the values of cosθ and sinθ.

Open in App
Solution

Given, secθ+tanθ=p
1cosθ+sinθcosθ=p
1+sinθcosθ=p ....(1)
Also given secθtanθ=1p
1cosθsinθcosθ=1p
1sinθcosθ=1p .....(2)
Divide equation (2) by equation (1), we get
1+sinθ1sinθ=1p2
Apply componendo dividendo, we get
1sinθ+1+sinθ1sinθ1sinθ=1+p21p2
22sinθ=1+p21p2
sinθ=1p21+p2
sinθ=p21p2+1
cos2θ=1sin2θ=1[p21p2+1]2=[p2+1]2[p21]2[p2+1]2
cos2θ=p4+1+2p2p41+2p2(p2+1)2=4p2(p2+1)2
cosθ=2pp2+1

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon