If sec θ + tan θ = x, find the value of sec θ.
sec θ+tan θ=x−−−−(1)⇒sec θ=(x−tan θ)
Squaring both sides, we get,
sec2 θ=x2−2x tan θ+tan2 θ⇒sec2 θ−tan2 θ=x2−2x tan θ⇒1=x2−2x tan θ⇒2x tan θ=x2−1⇒tan θ=x2−12x
Put this value in equation (1), we get
sec θ+x2−12x=x⇒sec θ=x2−12x−x⇒sec θ=2x2−x2+12x⇒sec θ=x2+12x