If secθ+tanθ=x,then secθ=
x2+1x
x2+12x
x2−12x
x2−1x
secθ+tanθ=x ...... (1) Multiply secθ−tanθ on both sides, (secθ+tanθ)(secθ−tanθ)=x(secθ−tanθ) 1=x(secθ−tanθ) ⇒secθ−tanθ=1x .....(2)
Adding equation (1) and (2) we get, ⇒2secθ=1x+x ⇒secθ=x2+12x