wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secθtanθ=x, then show that secθ+tanθ=1x and hence find the values of cosθ and sinθ.

Open in App
Solution

Given:
secθtanθ=x …………….(1)
To prove:
secθ+tanθ=1/x

By trigonometric identity
sec2θtan2θ=1
(secθ+tanθ)(secθtanθ)=1

Put value of (1)
x.(secθ+tanθ)=1
secθ+tanθ=1/x

Now,
secθtanθ=x …………….(1)
secθ+tanθ=1/x ………….(2)

Add both equations
secθtanθ+secθ+tanθ=x+1x

2secθ=x2+1x

secθ=x2+12x

1cosθ=x2+12x[cosθ=1secθ]

cosθ=2xx2+1

using trigonometric identify
sinθ=1cos2θ

sinθ=1(2x/x2+1)2

sinθ=14x2(x2+1)2

sinθ=(x2+1)24x2(x2+1)2

sinθ=x4+12x2(x2+1)2

sinθ=(x21)2(x2+1)2

sinθ=(x21x2+1)2

sinθ=x21x2+1

cosθ=2xx2+1:sinθ=x21x2+1.

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon