If secθ + tanθ = x, then tanθ is:
(x2+1)x
(x2−1)x
(x2+1)2x
(x2−1)2x
We know that, sec2θ - tan2θ = 1
Therefore, (secθ + tanθ) (secθ - tanθ) = 1
Since, (secθ + tanθ) = x
Thus, (secθ - tanθ) = 1x
Solving both equations
we get tan θ = (x2−1)2x
If (secθ - tanθ) = 13, then value of (secθ + tanθ) is:
If secθ=x+14x, then secθ+tanθ=