If sec x cos 5x+1=0,where 0<x≤π2,find the value of
Given sec x cos 5x+1=0⇒1cos x.cos 5x+1=0⇒cos 5x+cos x=0⇒2cos 3x cos 2x=0⇒cos 3x=0 or cos 2x=0⇒3x=(2n+1)π2 or 2x=(2n+1)π2⇒x=(2n+1)π6 or x=(2n+1)π4⇒x=π6,π2,5π6,.... or x=π4,3π4,5π4...but 0<x≤ π2⇒x=π6 or x=π4 or x π2Hence,the values of x are π6,π4.