wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secx+tanx=0 then prove that
d2ydx2=cosx(1sinx)2

Open in App
Solution

y=secx+tanx

y=1+sinxcosx

dydx=cosxddx(1+sinx)(1+sinx)ddx(cosx)cos2x

=cos2x(1+sinx)(sinx)cos2x

=cos2x+sinx+sin2xcos2x

=1+sinxcos2x

=1+sinx1sin2x

=1+sinx(1+sinx)(1sinx)

=11sinx

d2ydx2=(1sinx)ddx(1)1ddx(1sinx)(1sinx)2

d2ydx2=cosx(1sinx)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon