wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secx+tanx=k, then show that sinx=k21k2+1.

Open in App
Solution

Given secx+tanx=k......(1).
Now,
k21k2+1
=(sec2x+tan2x+2tanx.secx)1(sec2x+tan2x+2tanx.secx)+1 [ Using (1)]
=(2tan2x+2tanx.secx)(2sec2x+2tanx.secx) [ Since sec2x=1+tan2x and sec2x1=tan2x]
=2tanx(tanx+secx)2secx(secx+tanx)
=tanxsecx
=sinx.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon