sec2x−tan2x=1 (identity)
⟹(secx−tanx)(secx+tanx)=1
⟹secx−tanx=1k
Solving the above simultaneously with secx+tanx=k gives:
secx=12(k+1k) (1)
tanx=12(k−1k) (2)
Using trigonometry definitions:
tanx=sinxcosx=sinxsecx⟹sinx=tanxsecx
Substituting (1) and (2):
sinx=k−1/kk+1/k=k2−1k2+1
Hence, proved.