wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If sec x+tanx=k,then show that sinx=k21k2+1 ?

Open in App
Solution

sec2xtan2x=1 (identity)
(secxtanx)(secx+tanx)=1
secxtanx=1k
Solving the above simultaneously with secx+tanx=k gives:
secx=12(k+1k) (1)
tanx=12(k1k) (2)
Using trigonometry definitions:
tanx=sinxcosx=sinxsecxsinx=tanxsecx
Substituting (1) and (2):
sinx=k1/kk+1/k=k21k2+1
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon