wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secx+tanx=p then prove that sinx=p21p2+1 .

Open in App
Solution

Given: secx+tanx=p .... (1)
secxtanx=1/p Sec2xtan2x=(Secxtanx)(secx+tanx)=1
By adding the above equation we got;
2secx=p+1p=p2+1p
secx=p2+12p
cosx=2pp2+1
AC2=AB2+BC2
(p2+1)2=(2p)2+(AB)2
p4+1+2p24p2=AB2
By solving;
AB=p21
sinx=p21p2+1

1129096_1040524_ans_98aa74a21d1f48e9b2391491cc3182a9.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon