Sec∅ + tan∅ = P -------------(1)
we know,
sec²∅ - tan²∅ = 1
(sec∅ - tan∅)(sec∅ + tan∅) = 1
put , sec∅ + tan∅ = P
(sec∅ - tan∅) × P = 1
(sec∅ - tan∅) = 1/P ---------(2)
add equations (1) and (2)
2sec∅ = P + 1/P
sec∅ = ( P² + 1)/2P
cos∅ = 1/sec∅ = 2P/(P² + 1)
we know,
cos∅ = base/hypotenuse
so, perpendicular = √( h² - b²)
= √{(P²+1)² -(2P)²}
=√{P²-1)²
=(P² -1)
sin∅ =perpendicular/hypotenuse
= (p² -1)/(P² +1)
hence,
sin∅ = (P² -1)/(P² + 1)