If sets A and B are defined as A={(x,y) | y=1x, x≠0, x ∈ R}, B={(x,y) | y=−x, x ∈ R}, then
A∩B=A
A∪B=B
A∩B=ϕ
A∪B=A
x ∈ (A∩B)⇒x ∈ A and x ∈ Bi.e. y=1x and y=−x ∴ x ∈ A∩B ⇒−x=1x ⇒−x2=1 ⇒x2=−1, This is not possible for any real value of x. ∴A∩B=ϕ
If the sets A and B are defined as
A = {(x, y) : y = 1x, 0 ≠ x ∈ R}
B = {(x, y) : y = -x, x ∈ R}, then