The given matrix is,
F( x )=[ cosx −sinx 0 sinx cosx 0 0 0 1 ]
We have to prove that F( x )F( y )=F( x+y ).
The above matrix can also be written as,
F( y )=[ cosy −siny 0 siny cosy 0 0 0 1 ]
And,
F( x+y )=[ cos( x+y ) −sin( x+y ) 0 sin( x+y ) cos( x+y ) 0 0 0 1 ]
Also,
F( x )F( y )=[ cosx −sinx 0 sinx cosx 0 0 0 1 ][ cosy −siny 0 siny cosy 0 0 0 1 ] =[ cosxcosy−sinxsiny+0 −cosxsiny−sinxcosy+0 0 sinxcosy+cosxsiny+0 −sinxsiny+cosxcosy+0 0 0 0 1 ] =[ cos( x+y ) −sin( x+y ) 0 sin( x+y ) cos( x+y ) 0 0 0 1 ] =F( x+y )
Hence, it is proved that F( x )F( y )=F( x+y ).