If sin-1(1-x)-2sin-1x=π2, then x is equal to:
0,-12
0,12
0
None of these
Finding the value of x:
Given that sin-1(1-x)-2sin-1x=π2Let x=siny⇒sin-1(1-siny)-2y=π2⇒sin-1(1-siny)=π2+2y⇒1-siny=sinπ2+2y⇒1-siny=cos2y⇒1-siny=1-2sin2y[cos2y=1-2sin2y]⇒2sin2y-siny=0⇒2x2-x=0⇒x(2x-1)=0⇒x=0,2x-1=0⇒x=0,x=12But x=12 does not satisfy the given equation.
So,x=0 is the only solution to the given equation.
Hence, option C is correct.