wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin-1a+sin-1b+sin-1c=π, then the value of a1-a2+b1-b2+c1-c2 will be


A

2abc

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

abc

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

12abc

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

13abc

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

2abc


Explanation for the correct option.

Step 1: Given information

Given that, sin-1a+sin-1b+sin-1c=π.

Put a=sinA,b=sinBandc=sinC

A+B+C=π
Hence A,B and C can be assumed to be angles of the triangle.
Therefore, a1-a2+b1-b2+c1-c2

on substituting values gives:

=sinA1sin2A+sinB1sin2B+sinC1sin2C=sinAcosA+sinBcosB+sinCcosC1sin2θ=cosθ


Step 2: Multiplying and dividing by 2, we get

sinAcosA+sinBcosB+sinCcosC=sin2A+sin2B+sin2C2[sin2x=2sinxcosx]
sin2A+sin2B+sin2C2=2sin(A+B)cos(A-B)+sin2C2[sinx+siny=2sinx+y2sinx-y2=2sinCcos(A-B)+2sinCcosC2(A+B=π-C)=sinC(cos(A-B)+cos(π-(A+B)))=sinC(cos(A-B)-cos(A+B))=2sinCsinAsinB=2abc

So, a1-a2+b1-b2+c1-c2=2abc

Hence, option A is correct.


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon