If sin−1x−cos−1x=π6 then x=
We have,
sin−1x−cos−1x=π6
We know that
cos−1x=π2−sin−1x
Thus,
sin−1x−(π2−sin−1x)=π6
sin−1x−π2+sin−1x=π6
2sin−1x=π6+π2
2sin−1x=2π3
sin−1x=π3
x=sinπ3
x=√32
Hence, this is the answer.
Inverse circular functions,Principal values of sin−1x,cos−1x,tan−1x. tan−1x+tan−1y=tan−1x+y1−xy, xy<1 π+tan−1x+y1−xy, xy>1. Evaluate the following : (a) sin[π3−sin−1(−12)] (b) sin[π2−sin−1(−√32)]