We have,
sin−1x=π5
We know that,
sin−1x+cos−1x=π2
Now,
⇒π5+cos−1x=π2
⇒cos−1x=π2−π5
⇒cos−1x=5π−2π10
⇒cos−1x=3π10
Hence, this is the answer.
If sin−1x=π5 for some x ϵ(−1,1), then the value of cos−1x is [IIT 1992]