We have,
sin−1x+sin−1y+sin−1z=π2
Let sin−1x=α, sin−1y=β and sin−1z=γ ⋯(1)
∴α+β+γ=π2
α+β=π2−γ
cos(α+β)=cos(π2−γ)
⇒cosα⋅cosβ−sinα⋅sinβ=sinγ ⋯(2)
From (1),
sinα=x
⇒cosα=√1−x2
Similarly, cosβ=√1−y2
Now, from equation (2),
√1−x2√1−y2=xy+z
Squaring both sides, we have
(1−x2)(1−y2)=x2y2+z2+2xyz
⇒1−y2−x2+x2y2=x2y2+z2+2xyz
⇒x2+y2+z2+2xyz=1