If sin-1x+sin-1y+sin-1z=π2, then the value of x2+y2+z2+2xyz=
0
1
2
3
Explanation for the correct option.
Given that, sin-1x+sin-1y+sin-1z=π2.
Let x=sinα,y=sinβ,z=siny
α+β+γ=π2⇒α+β=π2-γ
⇒cos(α+β)=cos{π2-γ}⇒cosα·cosβ-sinα·sinβ=sinγ1-x21-y2-xy=z⇒1-x2(1-y2=xy+z⇒1-x2(1-y2=xy+z22⇒1-y2-x2+x2y2=x2y2+z2+2xyz⇒x2+y2+z2+2xyz=1
Hence, option B is correct.