⇒x=sinA,y=sinB,z=sinC ........ [As sin(sin−1(x))=x]
Given that: sinx+siny+sinz=π
⇒A+B+C=π
A+B=π−C ..... (1)
To prove: x√1−x2+y√1−y2+z√1−z2=2xyz
LHS:
=sinA√1−sin2A+sinB√1−sin2B+sinC√1−sin2C
As we know, {√1−sin2A=cosA} , LHS simplifies to:
=sinAcosA+sinBcosB+sinCcosC
=2sinAsinA+2sinBcosB+2sinCcosC2 ... Multiply and Divide by 2
As we know, 2sinAcosA=sin(2A) so LHS:
=sin2A+sin2B+2sinCcosC2
=2sin(A+B)cos(A−B)+2sinCcosC2 [Identity:sinx+siny=2sin(x+y2)cos(x−y2)]
=2sin(π−C)cos(A−B)+2sinCcosC2 ..... From (1)
=2sinC(cos(A−B)+cos(π−(A+B)))2 [Identity:sin(π−C)=sinC]
2sinC(cos(A−B)−cos((A+B)))2 [Identity:cos(π−x)=−cosx]
2sinC(2sin(A)sin(B))2 [Identity:cosy−cosx=2sin(x+y2)sin(x−y2)]
=2sinAsinBsinC
=2xyz
LHS = RHS
Hence proved