wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin1x=θ+β and sin1y=θβ, then 1+xy=

A
sin2θ+sin2β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin2θ+cos2β
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cos2θ+cos2β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos2θ+sin2β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B sin2θ+cos2β
Given, sin1x=θ+βandsin1y=θβ

x=sin(θ+β),y=sin(θβ)

1+xy
=1+sin(θ+β)sin(θβ)

sin(AB)=sinAcosBsinBcosA
sin(A+B)=sinAcosB+sinBcosA

1+xy=1+[(sinθcosβ+cosθsinβ)(sinθcosβcosθsinβ)]

=1+[(sinθcosβ)2(cosθsinβ)2] ....... using a2b2=(ab)(a+b)

=sin2(θ)+cos2(θ)+(sinθcosβ)2(cosθsinβ)2 .......... [sin²x+cos²x=1]

=sin2(θ)[1+cos2β]+cos2(θ)[1sin2β]

=sin2(θ)+sin2(θ)cos2(β)+cos2(θ)(cos2β)

=sin2(θ)+cos2(β)[sin2(θ)+cos2(θ)]

=sin2(θ)+cos2(β) .......... [sin²x+cos²x=1]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation between Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon