The correct option is D such that dydx=13√1−x2 for −1<x<0
sin−1x+|y|=2y
⇒2y−|y|=sin−1x
Let y≥0
Then, y=sin−1x
y≥0⇒x∈[0,1]
Let y<0
Then, sin−1x=3y
⇒y=13sin−1x
y<0⇒x∈[−1,0)
y=⎧⎨⎩13sin−1x, −1≤x<0sin−1x, 0≤x≤1
⇒dydx=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩131√1−x2,−1≤x<01√1−x2,0≤x≤1
Function is continuous but not differentiable at x=0