If sin24x+cos2x=2sin4x.cos4x then number of values of x satisfying, if x∈[−2π,2π] is
0
sin24x+cos2x=2sin4xcos4x⇒sin24x−2sin4x cos4x+cos2x∴sin4x=2cos4x±√4cos8x−4cos2x2sin4x=cos4x±√cos2x(cos6x−1)∴cos6x=1 sin4x=1 ⇒4x=(4n2+1)π2∴cosx=±1 x=(4n2+1)π8∴x=n1π,n,∈Z ∴n1π=(4n2+1)π8
Not possible,
∴ No solution
The graph will help you understand better.