If sin2A=x , then sinAsin2Asin3Asin4A is a polynomial in x, the sum of whose coefficients is
sinAsin2Asin3Asin4A
=sinAsin2A(2sin2Acos2A)sin3A..........[∵sin2x=2sinxcosx]
=2sinA(sin2A)2cos2A[3sinA−4sin3A]...............[∵sin3x=3sinx−4sin3x]
=8sin3Acos2A[1−2sin2A][3sinA−4sin3A]
=(8sin3A−16sin5A)(1−sin2A)(3sinA−4sin3A)
=(8sin3A−16sin5A)(3sinA−4sin3A−3sin3A+4sin5A)
=(24sin4A−32sin6A−24sin6A+32sin8A−48sin6A+64sin8A+48sin8A−64sin10A)
=(24sin4A−104sin6A+144sin8A−64sin10A)
=(24x2−104x3+144x4−64x5)
Sum of coefficients =24−104+144−64
=168−168=0