If sin2α,3cos2α are the roots of the equation 4x2−3px+k=0, then-
Hence
Sum of roots is
sin2α+3cos2α=3p4
...(i)
And
3sin2α.cos2α=k4
Or
3.[4sin2α.cos2α]=k
Or
3sin22α=k
Now
sin2α+3cos2α=3p4
Or
sin2α+3−3sin2α=3p4
Or
3−2sin2α=3p4
Or
4−83sin2α=p.