wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin2A2sin2B2sin2C2 are in H.P., where a,b,c are sides of triangle,then show that a,b,c are in H.p.

Open in App
Solution

Giventhatsin2A2,sin2B2,sin2C2areinH.P1sin2A2,1sin2B2,1sin2C2willbeinA.Pbc(sb)(sc),acs(sa)(sb),abs(sa)(sb)willbeinA.Pbc(sa)s(sa)(sb)(sc),ac(sb)s(sa)(sb)(sc),ab(sc)s(sa)(sb)(sc)willbeinA.Pbc(sa)Δ2,ac(sb)Δ2,ab(sc)Δ2areinA.P[areaofΔ=s(sa)(sb)(sc)]bc(sa),ac(sb),ab(sc)areinA.Pbcsabc,acsabc,absabcareinA.Pbcs,acsandabsareinA.PNowdividingbyabcswegetbcsabcs,acsabcs,absabcs=1a,1b,1careinA.Pa,b,careinH.Pwherea,bandcaresidesofthetriangle.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cosine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon