If sin2θ1+sin2θ2+⋅⋅⋅+sin2θ104=0 where θi∈[0,π],i=1,2,...,104, then the different sets of values of (θ1,θ2,θ3,⋯,θ104) for which cosθ1+cosθ2+⋯+cosθ104=100 is
Open in App
Solution
The given expression: sin2θ1+sin2θ2+⋅⋅⋅+sin2θn=0 is possible only if sinθ1=sinθ2=⋯=sinθn=0 ⇒θ=0 or π(∵θ∈[0,π])
Now, cosθ1+cosθ2+⋯+cosθn=n−4 that implies any two of θ1,θ2,⋯,θ104 must be π and rest should be 0. So, total number of ways is 104C2=5356