Consider the given equation.
sin2θ+cosθ=x ……. (1)
Since,
sin2θ=1−cos2θ ……. (2)
Therefore,
1−cos2θ+cosθ=x
cos2θ−cosθ+x−1=0
cosθ=1±√1−4×1×(x−1)2
cosθ=1±√1−4(x−1)2
cosθ=1±√1−4x+42
cosθ=1±√5−4x2
From equation (2),
sin2θ=1−(1±√5−4x2)2
Now,
sin2θ+cos2θ=1−(1±√5−4x2)2+(1±√5−4x2)2
sin2θ+cos2θ=1
Hence, this is the answer.