If sin2x + cos2y = 2 sec2z, find the value of cos2x + sin2y+2sin2z.
Maximum value of sin2x and cos2y is one. Minimum value of sec2z is one and minimum value of 2sec2z is two.
So we have.
sin2x + cos2y ≤ 2 and sin2x + cos2y = 2 sec2z ≥ 2
⇒ sin2x + cos2y = 2
This means each of the values sin2x, cos2y and sec2z is equal to one.
sin2x = 1 ⇒ cos2x = 0
cos2y = 1 ⇒ sin2 y = 0
sec2z = 1 ⇒ cos2z = 1 ⇒ sin2z = 0
⇒ cos2x + sin2 y +2 sin2 z=0+0+ 2 x 0
=0