If sin2z = 1 + cos2 y, find the value of cos2 z + sin2 y
We know 1 + cos2y is greater than or equal to one. Also, the maximum value of sin2 z is 1.
So we have sin2z ≤ 1 and sin2 z = 1 + cos2 y ≥1
or 1 ≤ sin2 z ≤ 1
⇒ sin2 z = 1
⇒ cos2 y = sin2 z - 1 = 1 - 1 = 0
⇒ cos2 z + sin2 y = 0 + 1 = 1