If sin2A=xthen sin 3A. sin A is polynomial in x, whose degree is equal to
Ifsin2A=xthen........................
∵cosα+cosβ=b
2cos(α+β2)cos(α−β2)=b....(i)
Now sinα+sinβ=a
2sin(α+β2)cos(α−β2)=a....(ii)
Divide (ii) by (i)
tan(α+β2)=a/b
⇒tanθ=a/b
Now sin2θ+cos2θ=2aba2b2+1−a2b2a2b2
=2ab+b2−a2a2+b2
⇒sin2θ+cos2θ=1−2a(a−b)a2+b2⇒n=−2
Now; cosecnA=x
⇒sin2A=x
Sin3AsinA=3sin2A−4sin4A
=3x−4x2
So degree=2