wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+2cosθ=1 prove that 2sinθ-cosθ=2.

Open in App
Solution

It is given that,
sinθ+2cosθ=12cosθ=1-sinθ .....iSquaring both sides, we get2cosθ2=1-sinθ24cos2θ=1+sin2θ-2sinθ4cos2θ=1+sin2θ-2sinθ-1+14cos2θ=2-2sinθ-1-sin2θ4cos2θ=2-2sinθ-cos2θ5cos2θ=21-sinθ 5cos2θ=4cosθ Using (i)cosθ5cosθ-4=0cosθ=0, cosθ=45 Putting cosθ=4 5 in sinθ+2cosθ=1, we getsinθ=1-2cosθ=1-245=-35This is not possible. Putting cosθ=0 in sinθ+2cosθ=1, we getsinθ=1Thus, the value of 2sinθ-cosθ=21-0=2.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon