The correct option is
B [−4,4]Given:
∣∣sin2x+17−x2∣∣=∣∣16−x2∣∣+2sin2x+cos2x
⇒∣∣sin2x+17−x2∣∣=∣∣16−x2∣∣+sin2x+sin2x+cos2x
⇒∣∣sin2x+17−x2∣∣=∣∣16−x2∣∣+sin2x+1
We know that −1≤sinx≤1
⇒0≤sin2x≤1
If sin2x=1⇒∣∣sin2x+17−x2∣∣=∣∣16−x2∣∣+sin2x+1
⇒∣∣sin2x+17−x2∣∣=16−x2+1+1
⇒∣∣sin2x+17−x2∣∣=∣∣18−x2∣∣
Case:1If x<−√17
⇒−sin2x−17+x2=−16+x2+1+sin2x
⇒−2sin2x=−15+17=2
⇒sin2x=−1 is not possible since 0≤sin2x≤1
Case:2Let −√17≤x<−4
⇒sin2x+17−x2=−16+x2+1+sin2x
⇒−2x2=−15−17=−32
⇒x2=16
∴x=±4 is not a valid solution since −√17≤x<−4
Case:3Let −4≤x≤4
⇒sin2x+17−x2=16−x2+1+sin2x
⇒17=17 is a solution
∴−4≤x≤4 is a solution set.
Case:4Let √17<x>4
⇒sin2x+17−x2=−16+x2+1+sin2x
⇒−2x2=−15−17=−32
⇒x2=16
⇒x=±4 is not a valid solution ∵√17<x>4
Case:5Let x≥√17
⇒−sin2x−17+x2=−16+x2+1+sin2x
⇒−2sin2x−17=−16+1
⇒−2sin2x=−16+1+17=2
⇒sin2x=−1 is not a valid solution ∵0≤sin2x≤1
∴ the only possible solution is x∈[−4,4]