The correct options are
A x=(2m+1)π2
B y=nπ
C z=tπ
LHS =sin2x+cos2y≤2
RHS =2sec2z≥2
Hence LHS = RHS only when
sin2x=1, cos2y=1 and sec2z=1
⇒cos2x=0, sin2y=0 and cos2z=1
⇒cosx=0, siny=0 and sinz=0
⇒x=(2m+1)π2,y=nπ,z=tπ
where m,n,t∈Z
Now, assuming x=y+z
(2m+1)π2=(n+t)π⇒(2m+1)=2(n+t)
We know that,
2(n+t)→ even number2m+1→ odd number
So,
x≠y+z