Sum of Trigonometric Ratios in Terms of Their Product
If sin 3θ+sin...
Question
If sin3θ+sin3(θ+2π3)+sin3(θ+4π3)=asinbθ, then the value of ∣∣∣ba∣∣∣ is
Open in App
Solution
sinθ+sin(θ+2π3)+sin(θ+4π3)=sinθ+2sin(θ+π)cos(−π3)=0 So, sin3θ+sin3(θ+2π3)+sin3(θ+4π3) =3sinθ⋅sin(θ+2π3)⋅sin(θ+4π3) =3sinθ⋅sin(π−(θ+2π3))⋅sin(π+(θ+π3))=−3sinθsin(π3−θ)sin(π3+θ)=−3sinθ(34−sin2θ)=−3(3sinθ−4sin3θ4)=−34sin3θa=−34,b=3∴∣∣∣ba∣∣∣=4