If sin3xsin3x=∑m=0nCmcosmx where c0,c1,c2,………..cn are constants and Cn≠0, then the value of n is:
2
4
6
8
Explanation for the correct option.
Given that, sin3xsin3x=∑m=0nCmcosmx....(1)
Using sin3x=3sinx-4sin3x & substituting in equation (1) we get:
∴sin3xsin3x=3sinx-sin3x4sin3x=143sinxsin3x-sin23x=1432[cos4x-cos2x]-sin23xsina+sinb=cosa+b-cos(a-b)=1432[cos4x-cos2x]+cos6x-1=18[3cos4x-3cos2x+2cos6x-2]=18[-2-3cos2x+3cos4x+2cos6x]=∑m=0nCmcosmx
On comparing the LHS & RHS we get :
n=6
Hence, option (C) is correct.
If sin3 x sin 3x=∑nm=0cm cos mx where c0,c1,c2.⋯⋯,cn are constants and cn≠0, then the value of n is