If sin3xsin3x=∑nm=0Cmcosmx
where c0,c1,c2,...........cn are constants and Cn≠0,then the value of n is
sin3xsin3x=[3sinx−sin3x4]sin3x[∵sin3x=3sinx−4sin3x]
=14[3sinxsin3x−sin23x]
=14[32[cos4x−cos2x]−sin23x]
=14[32[cos4x−cos2x]+cos6x−1]
=18[3cos4x−3cos2x+2cos6x−2]
=18[−2−3cos2x+3cos4x+2cos6x]
=∑nm=0Cmcosmx
n=6