wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin4Aa+cos4Ab=1(a+b), then the value of sin8Aa3+cos8Ab3 is equal to


A

1a+b3

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

a3b3(a+b)3

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

a2b2(a+b)2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

1a+b3


Explanation for the correct option.

Step 1: Find the value of sin2A

Given that, sin4Aa+cos4Ab=1(a+b).

sin4Aa+1-sin2A2b=1(a+b)sin4Aa+1+sin4A-2sin2Ab=1(a+b)sin4Aa+1b+sin4Ab-2sin2Ab=1(a+b)sin4A(1a+1b)-2sin2Ab=1(a+b)-1bsin4A(a+b)ab-2asin2Aab=(b-a-b)(a+b)b(a+b)2sin2A2-2a(a+b)sin2A=-a2(a+b)sin2A2-2a(a+b)sin2A+a2=0(a+b)sin2A-a2=0(a+b)sin2A-a=0

Step 2: Find the value of sin8Aa3+cos8Ab3

Now find the value of cos2A.

∴cos2A=1-sin2A=1-a(a+b)=b(a+b)

∴sin8Aa3+cos8Ab3=a(a+b)4+b(a+b)4=a+ba+b4=1a+b3

Hence, option A is correct.


flag
Suggest Corrections
thumbs-up
62
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon