If sin4Aa+cos4Ab=1(a+b), then the value of sin8Aa3+cos8Ab3 is equal to
1a+b3
a3b3(a+b)3
a2b2(a+b)2
None of these
Explanation for the correct option.
Step 1: Find the value of sin2A
Given that, sin4Aa+cos4Ab=1(a+b).
sin4Aa+1-sin2A2b=1(a+b)sin4Aa+1+sin4A-2sin2Ab=1(a+b)sin4Aa+1b+sin4Ab-2sin2Ab=1(a+b)sin4A(1a+1b)-2sin2Ab=1(a+b)-1bsin4A(a+b)ab-2asin2Aab=(b-a-b)(a+b)b(a+b)2sin2A2-2a(a+b)sin2A=-a2(a+b)sin2A2-2a(a+b)sin2A+a2=0(a+b)sin2A-a2=0(a+b)sin2A-a=0
Step 2: Find the value of sin8Aa3+cos8Ab3
Now find the value of cos2A.
∴cos2A=1-sin2A=1-a(a+b)=b(a+b)
∴sin8Aa3+cos8Ab3=a(a+b)4+b(a+b)4=a+ba+b4=1a+b3
Hence, option A is correct.