If sin4A-cos2A=cos4A-sin2A (where, 0<A<Ï€4) then the value of tan4A is:
1
13
3
3-13+1
3+13-1
Explanation for the correct option.
Given that, sin4A-cos2A=cos4A-sin2A.
sin4A+sin2A=cos4A+cos2A
Now using identity, sinC+sinD=2sinC+D2cosC-D2andcosa+cosb=2cosC+D2cosC-D2.
⇒2sin4A+2A2cos4A-2A2=2cos4A+2A2cos4A-2A2⇒2sin3AcosA=2cos3AcosA⇒Sin3A=cos3A⇒tan3A=1⇒3A=π4⇒A=π12
So, the value of:
∴tan4A=tanπ3=3
Hence, option C is correct.