If sin90∘−(A+B)=cosx=cosy,
find the value of x and y; if y is the angle C of triangle ABC. (In triangle ABC, ∠A+∠B=90∘)
both (a) and (b)
sin90∘−(A+B)=cosx
⇒sin90∘−(A+B)=sin(90∘−x)
Thus, x=A+B
sin90∘−(A+B)=cosy
⇒sin90∘−(A+B)=sin(90∘ - y)\)
Thus, y=A+B
Now, In triangle ABC, ∠A+∠B+∠C=180∘
and given, ∠A+∠B=90∘ and y=∠C of triangle ABC,
Hence, y=∠C=90∘
Also, x=∠A+∠B=y=90∘